Students’ Responses to Curricular Activities as Indicator of Coherence in Project-Based Science

William R. Penuel
Katie Van Horne
Sam Severance
David Quigley
Tamara Sumner

University of Colorado Boulder
Project-based Learning: The Promise
Project-Based Learning: The Reality

Why are we doing this activity?
A Measurement and Design Challenge

• How can we study students’ day-by-day experiences of units?
• How can we use data from students’ varied experiences of unit coherence to inform design?
Coherence: A Definition

• Lessons organized so that:
 • Each builds a piece of knowledge that is needed to explain a science phenomenon or solve an engineering design challenge.
 • Each generates new student questions that are addressed in subsequent lessons through student engagement in science and engineering practices.
Assumptions

• Coherence is only partly a function of the design of the unit; it is also a function of:
 • Teacher implementation
 • Student sensemaking

• Sustained engagement is supported by strong perceptions of relevance (Polman, 2012).
Initial Conjectures (1 of 2)

Student experience will differ, depending on less on type

THE REAL WORLD
- Ask Questions
- Observe
- Experiment
- Measure

COLLECT DATA
TEST SOLUTIONS

Investigating

ARGUE CRITIQUE ANALYZE

THEORIES AND MODELS
- Imagine
- Reason
- Calculate
- Predict

FORMULATE HYPOTHESES
PROPOSE SOLUTIONS

Developing Explanations
and Solutions

FIGURE 3-1 The three spheres of activity for scientists and engineers.
Initial Conjectures (2 of 2)

Tools and Materials: Different Lesson Types

Discursive Practices: Connecting Lessons to Challenge

Participant Structures: Engagement in Science and Engineering Practices

Emotional Experience

Experience of Coherence

Perceptions of Relevance
“Practical” Measurement Approach

• Relies on a handful of items
• Collected weekly from all students
• Aggregated and analyzed quickly for patterns to inform iterative design and implementation guidance to teachers
Project-Based Unit: Ecosystems

What species of tree should we plant and where, in order to benefit human beings and other organisms in the city?
Participants

• **592** students of **11** teachers from **8** schools in a large urban school district

• The majority of students in the district are Hispanic and **69%** participate in the free/reduced lunch program.

• Our data sample consists of **1,223** surveys submitted by participating students from August 25 through October 28, 2015.
Data Sources

• Emotional experience in class (Morozov et al., 2014)
 • “Today in class, I felt....”

• Perceived coherence of lesson
 • “We learned about something today that connects to the challenge.”

• Relevance to self, class, and community

Measure is available online: http://tinyurl.com/ihubpm
Approach to Analysis

• Hierarchical linear models fit to the data
 • Unconditional models to analyze teacher and student variance first

• Outcomes
 • Emotional experience in class
 • Coherence

• Predictor
 • Lesson type: Investigative or discursive
Findings: Excitement and Boredom

Table 2: Model of *excited* emotion with lesson connected to the challenge.

<table>
<thead>
<tr>
<th>Outcome - Model</th>
<th>Predictor</th>
<th>Coefficient in log odds (se)</th>
<th>Coefficient in probability</th>
<th>% of Variance at the Teacher Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected to challenge</td>
<td></td>
<td>0.84* (0.37)</td>
<td>0.70</td>
<td>40.1%</td>
</tr>
</tbody>
</table>

Table 3: Model of *bored* emotion with lesson connected to the challenge.

<table>
<thead>
<tr>
<th>Outcome - Model</th>
<th>Predictor</th>
<th>Coefficient in log odds (se)</th>
<th>Coefficient in probability</th>
<th>% of Variance at the Teacher Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bored</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected to challenge</td>
<td></td>
<td>-0.79 (0.48)</td>
<td>0.31</td>
<td>40.6%</td>
</tr>
</tbody>
</table>
Findings: Coherence

Table 1: Model of lesson connected to the challenge with type of challenge as predictors.

<table>
<thead>
<tr>
<th>Outcome - Model</th>
<th>Predictor</th>
<th>Coefficient in Log Odds (se)</th>
<th>Coefficient in Probability</th>
<th>% Variance at Teacher Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected to Challenge Unconditional Model</td>
<td></td>
<td></td>
<td></td>
<td>30.5%</td>
</tr>
<tr>
<td>Connected to Challenge Type of Lesson</td>
<td>Investigation-focused</td>
<td>-0.28 (0.33)</td>
<td>0.43</td>
<td>34.7%</td>
</tr>
<tr>
<td></td>
<td>Discursive-focused</td>
<td>-0.37 (0.20)</td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>
Additional Findings

• We found a significant correlation between perceptions of relevance and perceptions of coherence

• Perceived relevance, like coherence, has a high percent of teacher variance (37%)
 • Lesson type was not associated with perceived relevance.
Revised Conjectures

We need clearer guidance and deeper investigation of teacher moves to promote coherence.

Discursive Practices: Connecting Lessons to Challenge

Participant Structures: Engagement in Science and Engineering Practices

Emotional Experience

Experience of Coherence

Perceptions of Relevance
Informing Iterative Design

• Evidence presented to teachers for why challenge is important for student engagement.

• Developing additional guidance in the form of:
 • Lesson plan templates that engage students in reflection on coherence.
 • Heuristics for teachers to use when making adjustments to planned sequence of lessons.
Conclusions

• Curriculum design is important, but not enough to ensure coherence.

• With moderately coherent curriculum, student experience can still vary widely.

• There is value in using small surveys that elicit student experience in coherence for informing design.
Thank you.

Presentation is available at:
http://learndbir.org/talks-and-papers

This research was funded by the National Science Foundation and the Gordon and Betty Moore Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funders.