Design-Based Implementation Research in Schools: Benefits & Challenges

Hilda Borko

AACTE February, 2015
DBIR Principles

- Persistent problems of practice from multiple stakeholders’ perspectives
- Iterative, collaborative design
- Develop theory related to both classroom learning and implementation through systemic inquiry
- Develop capacity for sustaining change in systems
Persistent Problems of Practice

- Ensure high-quality teaching
- Improve students’ mathematics learning
- Provide professional learning experiences for all teachers

Scalable models of PD and conditions of effectiveness
Preparing Teacher Leaders to Facilitate Mathematics Professional Development

Hilda Borko Jennifer Jacobs Karen Koellner
The Problem-Solving Cycle

- Solve Problem and Develop Lesson Plans
- Video Analysis of Instruction and Student Thinking
- Video Analysis of Student Thinking and Instruction
- Teach and Videotape the Problem
• Is the Problem-Solving Cycle model of PD effective in improving instructional practices and student learning?

• Can it be adapted to different contexts?

• Can it be successfully enacted by different PD leaders without the extra support of the research project?
The Mathematics Leadership Preparation Model

- Summer Leadership Academy
- Leader Support Meeting 1: Conduct PSC Workshops Math and Planning
- Leader Support Meeting 2
- Leader Support Meeting 3: Conduct PSC Workshops: Video Analysis
- Conduct PSC Workshops: Video Analysis
PSC and Local Context

We learned that:

• Effective in improving teachers’ knowledge and instructional practices
• Successfully enacted by different teacher leaders
 – Teacher leaders adapted the PSC workshops for their own teachers and school contexts.
• Responsibility successfully shifted to district math coordinator
The CSET/SFUSD Researcher-Practitioner Partnership

• Project Goals
 • Develop and test a large-scale, system-level PD program aligned with the CCSS that is scalable and sustainable
 • Build capacity in SFUSD to conduct site-based PD
 • Refine theories of teacher and leader learning

• The Starting Point
 • SFUSD’s new task-based mathematics Core Curriculum
 • CSET’s PSC and MLP models
CSET/SFUSD Collaboration

• SFUSD Math Core Curriculum units aligned with CCSS, rolled out beginning Fall 2014
• PD by C&I Mathematics Department through Teacher Leader model
• Focused PD support in waves
 • Year 1: middle schools & k-8 schools
• Fit with PSC and MLP models
 • Teaching with rich math tasks
 • Teacher Leader model for site-based PD
• CSET to begin by working with TLs at 2 schools
Initial Modifications

Modifications to the timeline

- Funding began 1/1/15 rather than 9/1/14
- Spring 2015
 - Select Design Team schools
 - Attend ongoing PD for Teacher Leaders and Teachers

Modifications to the PSC and MLP

- Must use Core Curriculum tasks
 - Tasks still being revised
 - PD must be grade-level specific
- Must fit with multiple ongoing initiatives
 - Incorporate iPads in teaching
Ongoing Negotiations:
The “Practical Measures” Example

• *Practical measures* for DBIR collaborations
 • Explicitly linked to improvement goals
 • Data collection relatively undemanding
 • Rapid data analysis and prompt feedback
 • Recommended actions feasible

• The initial measures: student surveys
 • Small Group Discussion
 • Teacher Press
Small Group Discussion: Researcher Plans – Pilot Testing

Today I explained my thinking to another student in my group.

• Think aloud:

• Probes:
 • What do you think is meant by “explain my thinking”?
 • Could you give an example of a time you explained your thinking?
Small Group Discussion: Practitioner Plans - Immediate Use

Today I explained my thinking to another student in my group.

- Yes [14] 78%
- No [4] 22%
Challenges of DBIR

- Balancing competing priorities
 - Improve practice
 - Study change
 - Meet accountability demands
- Labor intensive
 - Data collection and analysis
 - Ongoing communication
- Differences in timelines
Benefits of DBIR

• Iterative design enables rapid cycles of design, implementation, testing, and improvement

• Practical measures provide information quickly and without disruption

• Fosters long-term sustainability

• Creates realistic solutions to persistent problems of practice
Thank you!

www.cset.stanford.edu/psc

hildab@stanford.edu